Metamath Proof Explorer
Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994)
(Proof shortened by Wolf Lammen, 19-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ecase2d.1 |
|
|
|
ecase2d.2 |
|
|
|
ecase2d.3 |
|
|
|
ecase2d.4 |
|
|
Assertion |
ecase2d |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecase2d.1 |
|
| 2 |
|
ecase2d.2 |
|
| 3 |
|
ecase2d.3 |
|
| 4 |
|
ecase2d.4 |
|
| 5 |
1 2
|
mpnanrd |
|
| 6 |
1 3
|
mpnanrd |
|
| 7 |
4
|
ord |
|
| 8 |
5 6 7
|
mtord |
|
| 9 |
8
|
notnotrd |
|