Metamath Proof Explorer
		
		
		
		Description:  Deduction for elimination by cases.  (Contributed by NM, 21-Apr-1994)
       (Proof shortened by Wolf Lammen, 19-Sep-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ecase2d.1 | ⊢ ( 𝜑  →  𝜓 ) | 
					
						|  |  | ecase2d.2 | ⊢ ( 𝜑  →  ¬  ( 𝜓  ∧  𝜒 ) ) | 
					
						|  |  | ecase2d.3 | ⊢ ( 𝜑  →  ¬  ( 𝜓  ∧  𝜃 ) ) | 
					
						|  |  | ecase2d.4 | ⊢ ( 𝜑  →  ( 𝜏  ∨  ( 𝜒  ∨  𝜃 ) ) ) | 
				
					|  | Assertion | ecase2d | ⊢  ( 𝜑  →  𝜏 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecase2d.1 | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 2 |  | ecase2d.2 | ⊢ ( 𝜑  →  ¬  ( 𝜓  ∧  𝜒 ) ) | 
						
							| 3 |  | ecase2d.3 | ⊢ ( 𝜑  →  ¬  ( 𝜓  ∧  𝜃 ) ) | 
						
							| 4 |  | ecase2d.4 | ⊢ ( 𝜑  →  ( 𝜏  ∨  ( 𝜒  ∨  𝜃 ) ) ) | 
						
							| 5 | 1 2 | mpnanrd | ⊢ ( 𝜑  →  ¬  𝜒 ) | 
						
							| 6 | 1 3 | mpnanrd | ⊢ ( 𝜑  →  ¬  𝜃 ) | 
						
							| 7 | 4 | ord | ⊢ ( 𝜑  →  ( ¬  𝜏  →  ( 𝜒  ∨  𝜃 ) ) ) | 
						
							| 8 | 5 6 7 | mtord | ⊢ ( 𝜑  →  ¬  ¬  𝜏 ) | 
						
							| 9 | 8 | notnotrd | ⊢ ( 𝜑  →  𝜏 ) |