Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecase2d.1 | |- ( ph -> ps ) | |
| ecase2d.2 | |- ( ph -> -. ( ps /\ ch ) ) | ||
| ecase2d.3 | |- ( ph -> -. ( ps /\ th ) ) | ||
| ecase2d.4 | |- ( ph -> ( ta \/ ( ch \/ th ) ) ) | ||
| Assertion | ecase2d | |- ( ph -> ta ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ecase2d.1 | |- ( ph -> ps ) | |
| 2 | ecase2d.2 | |- ( ph -> -. ( ps /\ ch ) ) | |
| 3 | ecase2d.3 | |- ( ph -> -. ( ps /\ th ) ) | |
| 4 | ecase2d.4 | |- ( ph -> ( ta \/ ( ch \/ th ) ) ) | |
| 5 | 1 2 | mpnanrd | |- ( ph -> -. ch ) | 
| 6 | 1 3 | mpnanrd | |- ( ph -> -. th ) | 
| 7 | 4 | ord | |- ( ph -> ( -. ta -> ( ch \/ th ) ) ) | 
| 8 | 5 6 7 | mtord | |- ( ph -> -. -. ta ) | 
| 9 | 8 | notnotrd | |- ( ph -> ta ) |