Metamath Proof Explorer


Theorem eengbas

Description: The Base of the Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Assertion eengbas N 𝔼 N = Base 𝔼 𝒢 N

Proof

Step Hyp Ref Expression
1 eengstr N 𝔼 𝒢 N Struct 1 17
2 fvexd N 𝔼 N V
3 opex Base ndx 𝔼 N V
4 3 prid1 Base ndx 𝔼 N Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2
5 elun1 Base ndx 𝔼 N Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Base ndx 𝔼 N Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
6 4 5 ax-mp Base ndx 𝔼 N Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
7 eengv N 𝔼 𝒢 N = Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
8 6 7 eleqtrrid N Base ndx 𝔼 N 𝔼 𝒢 N
9 1 2 8 opelstrbas N 𝔼 N = Base 𝔼 𝒢 N