Metamath Proof Explorer


Theorem eengbas

Description: The Base of the Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Assertion eengbas N𝔼N=Base𝔼𝒢N

Proof

Step Hyp Ref Expression
1 eengstr N𝔼𝒢NStruct117
2 fvexd N𝔼NV
3 opex Basendx𝔼NV
4 3 prid1 Basendx𝔼NBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2
5 elun1 Basendx𝔼NBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Basendx𝔼NBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
6 4 5 ax-mp Basendx𝔼NBasendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
7 eengv N𝔼𝒢N=Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
8 6 7 eleqtrrid NBasendx𝔼N𝔼𝒢N
9 1 2 8 opelstrbas N𝔼N=Base𝔼𝒢N