Database
ELEMENTARY GEOMETRY
Geometry in Hilbert spaces
Geometry in Euclidean spaces
EE^n fulfills Tarski's Axioms
eengbas
Next ⟩
ebtwntg
Metamath Proof Explorer
Ascii
Unicode
Theorem
eengbas
Description:
The Base of the Euclidean geometry.
(Contributed by
Thierry Arnoux
, 15-Mar-2019)
Ref
Expression
Assertion
eengbas
⊢
N
∈
ℕ
→
𝔼
⁡
N
=
Base
𝔼
𝒢
⁡
N
Proof
Step
Hyp
Ref
Expression
1
eengstr
⊢
N
∈
ℕ
→
𝔼
𝒢
⁡
N
Struct
1
17
2
fvexd
⊢
N
∈
ℕ
→
𝔼
⁡
N
∈
V
3
opex
⊢
Base
ndx
𝔼
⁡
N
∈
V
4
3
prid1
⊢
Base
ndx
𝔼
⁡
N
∈
Base
ndx
𝔼
⁡
N
dist
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
∑
i
=
1
N
x
⁡
i
−
y
⁡
i
2
5
elun1
⊢
Base
ndx
𝔼
⁡
N
∈
Base
ndx
𝔼
⁡
N
dist
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
∑
i
=
1
N
x
⁡
i
−
y
⁡
i
2
→
Base
ndx
𝔼
⁡
N
∈
Base
ndx
𝔼
⁡
N
dist
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
∑
i
=
1
N
x
⁡
i
−
y
⁡
i
2
∪
Itv
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
z
∈
𝔼
⁡
N
|
z
Btwn
x
y
Line
𝒢
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
∖
x
⟼
z
∈
𝔼
⁡
N
|
z
Btwn
x
y
∨
x
Btwn
z
y
∨
y
Btwn
x
z
6
4
5
ax-mp
⊢
Base
ndx
𝔼
⁡
N
∈
Base
ndx
𝔼
⁡
N
dist
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
∑
i
=
1
N
x
⁡
i
−
y
⁡
i
2
∪
Itv
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
z
∈
𝔼
⁡
N
|
z
Btwn
x
y
Line
𝒢
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
∖
x
⟼
z
∈
𝔼
⁡
N
|
z
Btwn
x
y
∨
x
Btwn
z
y
∨
y
Btwn
x
z
7
eengv
⊢
N
∈
ℕ
→
𝔼
𝒢
⁡
N
=
Base
ndx
𝔼
⁡
N
dist
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
∑
i
=
1
N
x
⁡
i
−
y
⁡
i
2
∪
Itv
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
⟼
z
∈
𝔼
⁡
N
|
z
Btwn
x
y
Line
𝒢
⁡
ndx
x
∈
𝔼
⁡
N
,
y
∈
𝔼
⁡
N
∖
x
⟼
z
∈
𝔼
⁡
N
|
z
Btwn
x
y
∨
x
Btwn
z
y
∨
y
Btwn
x
z
8
6
7
eleqtrrid
⊢
N
∈
ℕ
→
Base
ndx
𝔼
⁡
N
∈
𝔼
𝒢
⁡
N
9
1
2
8
opelstrbas
⊢
N
∈
ℕ
→
𝔼
⁡
N
=
Base
𝔼
𝒢
⁡
N