Metamath Proof Explorer


Theorem ef0

Description: Value of the exponential function at 0. Equation 2 of Gleason p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion ef0 e0=1

Proof

Step Hyp Ref Expression
1 0cn 0
2 eqid n00nn!=n00nn!
3 2 efcvg 0seq0+n00nn!e0
4 1 3 ax-mp seq0+n00nn!e0
5 eqid 0=0
6 2 ef0lem 0=0seq0+n00nn!1
7 5 6 ax-mp seq0+n00nn!1
8 climuni seq0+n00nn!e0seq0+n00nn!1e0=1
9 4 7 8 mp2an e0=1