Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006) (Revised by Mario Carneiro, 28-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eftval.1 | |
|
Assertion | ef0lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eftval.1 | |
|
2 | simpr | |
|
3 | nn0uz | |
|
4 | 2 3 | eleqtrrdi | |
5 | elnn0 | |
|
6 | 4 5 | sylib | |
7 | nnnn0 | |
|
8 | 7 | adantl | |
9 | 1 | eftval | |
10 | 8 9 | syl | |
11 | oveq1 | |
|
12 | 0exp | |
|
13 | 11 12 | sylan9eq | |
14 | 13 | oveq1d | |
15 | faccl | |
|
16 | nncn | |
|
17 | nnne0 | |
|
18 | 16 17 | div0d | |
19 | 8 15 18 | 3syl | |
20 | 10 14 19 | 3eqtrd | |
21 | nnne0 | |
|
22 | velsn | |
|
23 | 22 | necon3bbii | |
24 | 21 23 | sylibr | |
25 | 24 | adantl | |
26 | 25 | iffalsed | |
27 | 20 26 | eqtr4d | |
28 | fveq2 | |
|
29 | oveq1 | |
|
30 | 0exp0e1 | |
|
31 | 29 30 | eqtrdi | |
32 | 31 | oveq1d | |
33 | 0nn0 | |
|
34 | 1 | eftval | |
35 | 33 34 | ax-mp | |
36 | fac0 | |
|
37 | 36 | oveq2i | |
38 | 1div1e1 | |
|
39 | 37 38 | eqtr2i | |
40 | 32 35 39 | 3eqtr4g | |
41 | 28 40 | sylan9eqr | |
42 | simpr | |
|
43 | 42 22 | sylibr | |
44 | 43 | iftrued | |
45 | 41 44 | eqtr4d | |
46 | 27 45 | jaodan | |
47 | 6 46 | syldan | |
48 | 33 3 | eleqtri | |
49 | 48 | a1i | |
50 | 1cnd | |
|
51 | fz0sn | |
|
52 | 51 | eqimss2i | |
53 | 52 | a1i | |
54 | 47 49 50 53 | fsumcvg2 | |
55 | 0z | |
|
56 | 55 40 | seq1i | |
57 | 54 56 | breqtrd | |