Metamath Proof Explorer


Theorem ef0lem

Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis eftval.1 F=n0Ann!
Assertion ef0lem A=0seq0+F1

Proof

Step Hyp Ref Expression
1 eftval.1 F=n0Ann!
2 simpr A=0k0k0
3 nn0uz 0=0
4 2 3 eleqtrrdi A=0k0k0
5 elnn0 k0kk=0
6 4 5 sylib A=0k0kk=0
7 nnnn0 kk0
8 7 adantl A=0kk0
9 1 eftval k0Fk=Akk!
10 8 9 syl A=0kFk=Akk!
11 oveq1 A=0Ak=0k
12 0exp k0k=0
13 11 12 sylan9eq A=0kAk=0
14 13 oveq1d A=0kAkk!=0k!
15 faccl k0k!
16 nncn k!k!
17 nnne0 k!k!0
18 16 17 div0d k!0k!=0
19 8 15 18 3syl A=0k0k!=0
20 10 14 19 3eqtrd A=0kFk=0
21 nnne0 kk0
22 velsn k0k=0
23 22 necon3bbii ¬k0k0
24 21 23 sylibr k¬k0
25 24 adantl A=0k¬k0
26 25 iffalsed A=0kifk010=0
27 20 26 eqtr4d A=0kFk=ifk010
28 fveq2 k=0Fk=F0
29 oveq1 A=0A0=00
30 0exp0e1 00=1
31 29 30 eqtrdi A=0A0=1
32 31 oveq1d A=0A00!=10!
33 0nn0 00
34 1 eftval 00F0=A00!
35 33 34 ax-mp F0=A00!
36 fac0 0!=1
37 36 oveq2i 10!=11
38 1div1e1 11=1
39 37 38 eqtr2i 1=10!
40 32 35 39 3eqtr4g A=0F0=1
41 28 40 sylan9eqr A=0k=0Fk=1
42 simpr A=0k=0k=0
43 42 22 sylibr A=0k=0k0
44 43 iftrued A=0k=0ifk010=1
45 41 44 eqtr4d A=0k=0Fk=ifk010
46 27 45 jaodan A=0kk=0Fk=ifk010
47 6 46 syldan A=0k0Fk=ifk010
48 33 3 eleqtri 00
49 48 a1i A=000
50 1cnd A=0k01
51 fz0sn 00=0
52 51 eqimss2i 000
53 52 a1i A=0000
54 47 49 50 53 fsumcvg2 A=0seq0+Fseq0+F0
55 0z 0
56 55 40 seq1i A=0seq0+F0=1
57 54 56 breqtrd A=0seq0+F1