| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eftval.1 |
|
| 2 |
|
simpr |
|
| 3 |
|
nn0uz |
|
| 4 |
2 3
|
eleqtrrdi |
|
| 5 |
|
elnn0 |
|
| 6 |
4 5
|
sylib |
|
| 7 |
|
nnnn0 |
|
| 8 |
7
|
adantl |
|
| 9 |
1
|
eftval |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
oveq1 |
|
| 12 |
|
0exp |
|
| 13 |
11 12
|
sylan9eq |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
faccl |
|
| 16 |
|
nncn |
|
| 17 |
|
nnne0 |
|
| 18 |
16 17
|
div0d |
|
| 19 |
8 15 18
|
3syl |
|
| 20 |
10 14 19
|
3eqtrd |
|
| 21 |
|
nnne0 |
|
| 22 |
|
velsn |
|
| 23 |
22
|
necon3bbii |
|
| 24 |
21 23
|
sylibr |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
iffalsed |
|
| 27 |
20 26
|
eqtr4d |
|
| 28 |
|
fveq2 |
|
| 29 |
|
oveq1 |
|
| 30 |
|
0exp0e1 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
0nn0 |
|
| 34 |
1
|
eftval |
|
| 35 |
33 34
|
ax-mp |
|
| 36 |
|
fac0 |
|
| 37 |
36
|
oveq2i |
|
| 38 |
|
1div1e1 |
|
| 39 |
37 38
|
eqtr2i |
|
| 40 |
32 35 39
|
3eqtr4g |
|
| 41 |
28 40
|
sylan9eqr |
|
| 42 |
|
simpr |
|
| 43 |
42 22
|
sylibr |
|
| 44 |
43
|
iftrued |
|
| 45 |
41 44
|
eqtr4d |
|
| 46 |
27 45
|
jaodan |
|
| 47 |
6 46
|
syldan |
|
| 48 |
33 3
|
eleqtri |
|
| 49 |
48
|
a1i |
|
| 50 |
|
1cnd |
|
| 51 |
|
fz0sn |
|
| 52 |
51
|
eqimss2i |
|
| 53 |
52
|
a1i |
|
| 54 |
47 49 50 53
|
fsumcvg2 |
|
| 55 |
|
0z |
|
| 56 |
55 40
|
seq1i |
|
| 57 |
54 56
|
breqtrd |
|