Metamath Proof Explorer


Theorem efcan

Description: Cancellation law for exponential function. Equation 27 of Rudin p. 164. (Contributed by NM, 13-Jan-2006)

Ref Expression
Assertion efcan AeAeA=1

Proof

Step Hyp Ref Expression
1 negcl AA
2 efadd AAeA+A=eAeA
3 1 2 mpdan AeA+A=eAeA
4 negid AA+A=0
5 4 fveq2d AeA+A=e0
6 ef0 e0=1
7 5 6 eqtrdi AeA+A=1
8 3 7 eqtr3d AeAeA=1