Metamath Proof Explorer


Theorem efeul

Description: Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006)

Ref Expression
Assertion efeul AeA=eAcosA+isinA

Proof

Step Hyp Ref Expression
1 replim AA=A+iA
2 1 fveq2d AeA=eA+iA
3 recl AA
4 3 recnd AA
5 ax-icn i
6 imcl AA
7 6 recnd AA
8 mulcl iAiA
9 5 7 8 sylancr AiA
10 efadd AiAeA+iA=eAeiA
11 4 9 10 syl2anc AeA+iA=eAeiA
12 efival AeiA=cosA+isinA
13 7 12 syl AeiA=cosA+isinA
14 13 oveq2d AeAeiA=eAcosA+isinA
15 2 11 14 3eqtrd AeA=eAcosA+isinA