Metamath Proof Explorer


Theorem efipi

Description: The exponential of _i x. _pi is -u 1 . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efipi eiπ=1

Proof

Step Hyp Ref Expression
1 picn π
2 efival πeiπ=cosπ+isinπ
3 1 2 ax-mp eiπ=cosπ+isinπ
4 cospi cosπ=1
5 sinpi sinπ=0
6 5 oveq2i isinπ=i0
7 it0e0 i0=0
8 6 7 eqtri isinπ=0
9 4 8 oveq12i cosπ+isinπ=-1+0
10 neg1cn 1
11 10 addridi -1+0=1
12 9 11 eqtri cosπ+isinπ=1
13 3 12 eqtri eiπ=1