Metamath Proof Explorer


Theorem efne0

Description: The exponential of a complex number is nonzero. Corollary 15-4.3 of Gleason p. 309. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion efne0 AeA0

Proof

Step Hyp Ref Expression
1 ax-1ne0 10
2 oveq1 eA=0eAeA=0eA
3 efcan AeAeA=1
4 negcl AA
5 efcl AeA
6 4 5 syl AeA
7 6 mul02d A0eA=0
8 3 7 eqeq12d AeAeA=0eA1=0
9 2 8 imbitrid AeA=01=0
10 9 necon3d A10eA0
11 1 10 mpi AeA0