Metamath Proof Explorer


Theorem ehleudis

Description: The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)

Ref Expression
Hypotheses ehleudis.i I = 1 N
ehleudis.e E = 𝔼 hil N
ehleudis.x X = I
ehleudis.d D = dist E
Assertion ehleudis N 0 D = f X , g X k I f k g k 2

Proof

Step Hyp Ref Expression
1 ehleudis.i I = 1 N
2 ehleudis.e E = 𝔼 hil N
3 ehleudis.x X = I
4 ehleudis.d D = dist E
5 2 ehlval N 0 E = 1 N
6 5 fveq2d N 0 dist E = dist 1 N
7 4 6 syl5eq N 0 D = dist 1 N
8 fzfi 1 N Fin
9 1 8 eqeltri I Fin
10 1 eqcomi 1 N = I
11 10 fveq2i 1 N = I
12 11 fveq2i dist 1 N = dist I
13 eqid I = I
14 13 3 rrxdsfi I Fin dist I = f X , g X k I f k g k 2
15 12 14 syl5eq I Fin dist 1 N = f X , g X k I f k g k 2
16 9 15 mp1i N 0 dist 1 N = f X , g X k I f k g k 2
17 7 16 eqtrd N 0 D = f X , g X k I f k g k 2