Metamath Proof Explorer


Theorem eighmre

Description: The eigenvalues of a Hermitian operator are real. Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eighmre T HrmOp A eigvec T eigval T A

Proof

Step Hyp Ref Expression
1 hmopf T HrmOp T :
2 eleigveccl T : A eigvec T A
3 eigvalcl T : A eigvec T eigval T A
4 2 3 jca T : A eigvec T A eigval T A
5 eigvec1 T : A eigvec T T A = eigval T A A A 0
6 4 5 jca T : A eigvec T A eigval T A T A = eigval T A A A 0
7 1 6 sylan T HrmOp A eigvec T A eigval T A T A = eigval T A A A 0
8 2 2 jca T : A eigvec T A A
9 1 8 sylan T HrmOp A eigvec T A A
10 hmop T HrmOp A A A ih T A = T A ih A
11 10 3expb T HrmOp A A A ih T A = T A ih A
12 9 11 syldan T HrmOp A eigvec T A ih T A = T A ih A
13 eigre A eigval T A T A = eigval T A A A 0 A ih T A = T A ih A eigval T A
14 13 biimpa A eigval T A T A = eigval T A A A 0 A ih T A = T A ih A eigval T A
15 7 12 14 syl2anc T HrmOp A eigvec T eigval T A