Metamath Proof Explorer


Theorem eigvec1

Description: Property of an eigenvector. (Contributed by NM, 12-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigvec1 T:AeigvecTTA=eigvalTAAA0

Proof

Step Hyp Ref Expression
1 eigvalval T:AeigvecTeigvalTA=TAihAnormA2
2 1 oveq1d T:AeigvecTeigvalTAA=TAihAnormA2A
3 eleigvec2 T:AeigvecTAA0TAspanA
4 3 biimpa T:AeigvecTAA0TAspanA
5 normcan AA0TAspanATAihAnormA2A=TA
6 4 5 syl T:AeigvecTTAihAnormA2A=TA
7 2 6 eqtr2d T:AeigvecTTA=eigvalTAA
8 4 simp2d T:AeigvecTA0
9 7 8 jca T:AeigvecTTA=eigvalTAAA0