Metamath Proof Explorer


Theorem normcan

Description: Cancellation-type law that "extracts" a vector A from its inner product with a proportional vector B . (Contributed by NM, 18-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion normcan B B 0 A span B A ih B norm B 2 B = A

Proof

Step Hyp Ref Expression
1 elspansn B A span B x A = x B
2 1 adantr B B 0 A span B x A = x B
3 oveq1 A = x B A ih B = x B ih B
4 simpr B x x
5 simpl B x B
6 ax-his3 x B B x B ih B = x B ih B
7 4 5 5 6 syl3anc B x x B ih B = x B ih B
8 3 7 sylan9eqr B x A = x B A ih B = x B ih B
9 normsq B norm B 2 = B ih B
10 9 ad2antrr B x A = x B norm B 2 = B ih B
11 8 10 oveq12d B x A = x B A ih B norm B 2 = x B ih B B ih B
12 11 adantllr B B 0 x A = x B A ih B norm B 2 = x B ih B B ih B
13 simpr B B 0 x x
14 hicl B B B ih B
15 14 anidms B B ih B
16 15 ad2antrr B B 0 x B ih B
17 his6 B B ih B = 0 B = 0
18 17 necon3bid B B ih B 0 B 0
19 18 biimpar B B 0 B ih B 0
20 19 adantr B B 0 x B ih B 0
21 13 16 20 divcan4d B B 0 x x B ih B B ih B = x
22 21 adantr B B 0 x A = x B x B ih B B ih B = x
23 12 22 eqtrd B B 0 x A = x B A ih B norm B 2 = x
24 23 oveq1d B B 0 x A = x B A ih B norm B 2 B = x B
25 simpr B B 0 x A = x B A = x B
26 24 25 eqtr4d B B 0 x A = x B A ih B norm B 2 B = A
27 26 rexlimdva2 B B 0 x A = x B A ih B norm B 2 B = A
28 2 27 sylbid B B 0 A span B A ih B norm B 2 B = A
29 28 3impia B B 0 A span B A ih B norm B 2 B = A