Metamath Proof Explorer


Theorem pjspansn

Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjspansn ABA0projspanAB=BihAnormA2A

Proof

Step Hyp Ref Expression
1 spansnch AspanAC
2 1 3ad2ant1 ABA0spanAC
3 simp2 ABA0B
4 eqid projspanAB=projspanAB
5 pjeq spanACBprojspanAB=projspanABprojspanABspanAyspanAB=projspanAB+y
6 4 5 mpbii spanACBprojspanABspanAyspanAB=projspanAB+y
7 6 simprd spanACByspanAB=projspanAB+y
8 2 3 7 syl2anc ABA0yspanAB=projspanAB+y
9 oveq1 B=projspanAB+yBihA=projspanAB+yihA
10 9 ad2antll ABA0yspanAB=projspanAB+yBihA=projspanAB+yihA
11 pjhcl spanACBprojspanAB
12 2 3 11 syl2anc ABA0projspanAB
13 12 adantr ABA0yspanAprojspanAB
14 choccl spanACspanAC
15 1 14 syl AspanAC
16 15 3ad2ant1 ABA0spanAC
17 chel spanACyspanAy
18 16 17 sylan ABA0yspanAy
19 simpl1 ABA0yspanAA
20 ax-his2 projspanAByAprojspanAB+yihA=projspanABihA+yihA
21 13 18 19 20 syl3anc ABA0yspanAprojspanAB+yihA=projspanABihA+yihA
22 spansnsh AspanAS
23 22 adantr AyspanAspanAS
24 spansnid AAspanA
25 24 adantr AyspanAAspanA
26 simpr AyspanAyspanA
27 shocorth spanASAspanAyspanAAihy=0
28 27 3impib spanASAspanAyspanAAihy=0
29 23 25 26 28 syl3anc AyspanAAihy=0
30 15 17 sylan AyspanAy
31 orthcom AyAihy=0yihA=0
32 30 31 syldan AyspanAAihy=0yihA=0
33 29 32 mpbid AyspanAyihA=0
34 33 3ad2antl1 ABA0yspanAyihA=0
35 34 oveq2d ABA0yspanAprojspanABihA+yihA=projspanABihA+0
36 hicl projspanABAprojspanABihA
37 13 19 36 syl2anc ABA0yspanAprojspanABihA
38 37 addridd ABA0yspanAprojspanABihA+0=projspanABihA
39 21 35 38 3eqtrd ABA0yspanAprojspanAB+yihA=projspanABihA
40 39 adantrr ABA0yspanAB=projspanAB+yprojspanAB+yihA=projspanABihA
41 10 40 eqtrd ABA0yspanAB=projspanAB+yBihA=projspanABihA
42 41 oveq1d ABA0yspanAB=projspanAB+yBihAnormA2=projspanABihAnormA2
43 42 oveq1d ABA0yspanAB=projspanAB+yBihAnormA2A=projspanABihAnormA2A
44 simpl1 ABA0yspanAB=projspanAB+yA
45 simpl3 ABA0yspanAB=projspanAB+yA0
46 axpjcl spanACBprojspanABspanA
47 2 3 46 syl2anc ABA0projspanABspanA
48 47 adantr ABA0yspanAB=projspanAB+yprojspanABspanA
49 normcan AA0projspanABspanAprojspanABihAnormA2A=projspanAB
50 44 45 48 49 syl3anc ABA0yspanAB=projspanAB+yprojspanABihAnormA2A=projspanAB
51 43 50 eqtr2d ABA0yspanAB=projspanAB+yprojspanAB=BihAnormA2A
52 8 51 rexlimddv ABA0projspanAB=BihAnormA2A