Step |
Hyp |
Ref |
Expression |
1 |
|
spansnch |
|
2 |
1
|
3ad2ant1 |
|
3 |
|
simp2 |
|
4 |
|
eqid |
|
5 |
|
pjeq |
|
6 |
4 5
|
mpbii |
|
7 |
6
|
simprd |
|
8 |
2 3 7
|
syl2anc |
|
9 |
|
oveq1 |
|
10 |
9
|
ad2antll |
|
11 |
|
pjhcl |
|
12 |
2 3 11
|
syl2anc |
|
13 |
12
|
adantr |
|
14 |
|
choccl |
|
15 |
1 14
|
syl |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
chel |
|
18 |
16 17
|
sylan |
|
19 |
|
simpl1 |
|
20 |
|
ax-his2 |
|
21 |
13 18 19 20
|
syl3anc |
|
22 |
|
spansnsh |
|
23 |
22
|
adantr |
|
24 |
|
spansnid |
|
25 |
24
|
adantr |
|
26 |
|
simpr |
|
27 |
|
shocorth |
|
28 |
27
|
3impib |
|
29 |
23 25 26 28
|
syl3anc |
|
30 |
15 17
|
sylan |
|
31 |
|
orthcom |
|
32 |
30 31
|
syldan |
|
33 |
29 32
|
mpbid |
|
34 |
33
|
3ad2antl1 |
|
35 |
34
|
oveq2d |
|
36 |
|
hicl |
|
37 |
13 19 36
|
syl2anc |
|
38 |
37
|
addid1d |
|
39 |
21 35 38
|
3eqtrd |
|
40 |
39
|
adantrr |
|
41 |
10 40
|
eqtrd |
|
42 |
41
|
oveq1d |
|
43 |
42
|
oveq1d |
|
44 |
|
simpl1 |
|
45 |
|
simpl3 |
|
46 |
|
axpjcl |
|
47 |
2 3 46
|
syl2anc |
|
48 |
47
|
adantr |
|
49 |
|
normcan |
|
50 |
44 45 48 49
|
syl3anc |
|
51 |
43 50
|
eqtr2d |
|
52 |
8 51
|
rexlimddv |
|