Metamath Proof Explorer


Theorem eigvalval

Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigvalval T:AeigvecTeigvalTA=TAihAnormA2

Proof

Step Hyp Ref Expression
1 eigvalfval T:eigvalT=xeigvecTTxihxnormx2
2 1 fveq1d T:eigvalTA=xeigvecTTxihxnormx2A
3 fveq2 x=ATx=TA
4 id x=Ax=A
5 3 4 oveq12d x=ATxihx=TAihA
6 fveq2 x=Anormx=normA
7 6 oveq1d x=Anormx2=normA2
8 5 7 oveq12d x=ATxihxnormx2=TAihAnormA2
9 eqid xeigvecTTxihxnormx2=xeigvecTTxihxnormx2
10 ovex TAihAnormA2V
11 8 9 10 fvmpt AeigvecTxeigvecTTxihxnormx2A=TAihAnormA2
12 2 11 sylan9eq T:AeigvecTeigvalTA=TAihAnormA2