| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eigvalfval |
|- ( T : ~H --> ~H -> ( eigval ` T ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
| 2 |
1
|
fveq1d |
|- ( T : ~H --> ~H -> ( ( eigval ` T ) ` A ) = ( ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ` A ) ) |
| 3 |
|
fveq2 |
|- ( x = A -> ( T ` x ) = ( T ` A ) ) |
| 4 |
|
id |
|- ( x = A -> x = A ) |
| 5 |
3 4
|
oveq12d |
|- ( x = A -> ( ( T ` x ) .ih x ) = ( ( T ` A ) .ih A ) ) |
| 6 |
|
fveq2 |
|- ( x = A -> ( normh ` x ) = ( normh ` A ) ) |
| 7 |
6
|
oveq1d |
|- ( x = A -> ( ( normh ` x ) ^ 2 ) = ( ( normh ` A ) ^ 2 ) ) |
| 8 |
5 7
|
oveq12d |
|- ( x = A -> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
| 9 |
|
eqid |
|- ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) |
| 10 |
|
ovex |
|- ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) e. _V |
| 11 |
8 9 10
|
fvmpt |
|- ( A e. ( eigvec ` T ) -> ( ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
| 12 |
2 11
|
sylan9eq |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |