| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eigvalval |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
| 2 |
|
eleigveccl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A e. ~H ) |
| 3 |
|
ffvelcdm |
|- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 4 |
|
hicl |
|- ( ( ( T ` A ) e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) |
| 5 |
3 4
|
sylancom |
|- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. CC ) |
| 6 |
2 5
|
syldan |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) .ih A ) e. CC ) |
| 7 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
| 8 |
7
|
recnd |
|- ( A e. ~H -> ( normh ` A ) e. CC ) |
| 9 |
2 8
|
syl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( normh ` A ) e. CC ) |
| 10 |
9
|
sqcld |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) e. CC ) |
| 11 |
|
eleigvec |
|- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) |
| 12 |
11
|
biimpa |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 13 |
|
sqne0 |
|- ( ( normh ` A ) e. CC -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) |
| 14 |
8 13
|
syl |
|- ( A e. ~H -> ( ( ( normh ` A ) ^ 2 ) =/= 0 <-> ( normh ` A ) =/= 0 ) ) |
| 15 |
|
normne0 |
|- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
| 16 |
14 15
|
bitr2d |
|- ( A e. ~H -> ( A =/= 0h <-> ( ( normh ` A ) ^ 2 ) =/= 0 ) ) |
| 17 |
16
|
biimpa |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
| 18 |
17
|
3adant3 |
|- ( ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
| 19 |
12 18
|
syl |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( normh ` A ) ^ 2 ) =/= 0 ) |
| 20 |
6 10 19
|
divcld |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) e. CC ) |
| 21 |
1 20
|
eqeltrd |
|- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) e. CC ) |