Metamath Proof Explorer


Theorem el1o

Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005)

Ref Expression
Assertion el1o A1𝑜A=

Proof

Step Hyp Ref Expression
1 df1o2 1𝑜=
2 1 eleq2i A1𝑜A
3 0ex V
4 3 elsn2 AA=
5 2 4 bitri A1𝑜A=