Metamath Proof Explorer


Theorem el2xptp

Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018)

Ref Expression
Assertion el2xptp AB×C×DxByCzDA=xyz

Proof

Step Hyp Ref Expression
1 elxp2 AB×C×DpB×CzDA=pz
2 opeq1 p=xypz=xyz
3 2 eqeq2d p=xyA=pzA=xyz
4 3 rexbidv p=xyzDA=pzzDA=xyz
5 4 rexxp pB×CzDA=pzxByCzDA=xyz
6 df-ot xyz=xyz
7 6 eqcomi xyz=xyz
8 7 eqeq2i A=xyzA=xyz
9 8 rexbii zDA=xyzzDA=xyz
10 9 rexbii yCzDA=xyzyCzDA=xyz
11 10 rexbii xByCzDA=xyzxByCzDA=xyz
12 1 5 11 3bitri AB×C×DxByCzDA=xyz