Metamath Proof Explorer


Theorem el2xptp0

Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018)

Ref Expression
Assertion el2xptp0 X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z A = X Y Z

Proof

Step Hyp Ref Expression
1 xp1st A U × V × W 1 st A U × V
2 1 ad2antrl X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z 1 st A U × V
3 3simpa 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z 1 st 1 st A = X 2 nd 1 st A = Y
4 3 adantl A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z 1 st 1 st A = X 2 nd 1 st A = Y
5 4 adantl X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z 1 st 1 st A = X 2 nd 1 st A = Y
6 eqopi 1 st A U × V 1 st 1 st A = X 2 nd 1 st A = Y 1 st A = X Y
7 2 5 6 syl2anc X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z 1 st A = X Y
8 simprr3 X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z 2 nd A = Z
9 7 8 jca X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z 1 st A = X Y 2 nd A = Z
10 df-ot X Y Z = X Y Z
11 10 eqeq2i A = X Y Z A = X Y Z
12 eqop A U × V × W A = X Y Z 1 st A = X Y 2 nd A = Z
13 11 12 bitrid A U × V × W A = X Y Z 1 st A = X Y 2 nd A = Z
14 13 ad2antrl X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z A = X Y Z 1 st A = X Y 2 nd A = Z
15 9 14 mpbird X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z A = X Y Z
16 opelxpi X U Y V X Y U × V
17 16 3adant3 X U Y V Z W X Y U × V
18 simp3 X U Y V Z W Z W
19 17 18 opelxpd X U Y V Z W X Y Z U × V × W
20 10 19 eqeltrid X U Y V Z W X Y Z U × V × W
21 20 adantr X U Y V Z W A = X Y Z X Y Z U × V × W
22 eleq1 A = X Y Z A U × V × W X Y Z U × V × W
23 22 adantl X U Y V Z W A = X Y Z A U × V × W X Y Z U × V × W
24 21 23 mpbird X U Y V Z W A = X Y Z A U × V × W
25 2fveq3 A = X Y Z 1 st 1 st A = 1 st 1 st X Y Z
26 ot1stg X U Y V Z W 1 st 1 st X Y Z = X
27 25 26 sylan9eqr X U Y V Z W A = X Y Z 1 st 1 st A = X
28 2fveq3 A = X Y Z 2 nd 1 st A = 2 nd 1 st X Y Z
29 ot2ndg X U Y V Z W 2 nd 1 st X Y Z = Y
30 28 29 sylan9eqr X U Y V Z W A = X Y Z 2 nd 1 st A = Y
31 fveq2 A = X Y Z 2 nd A = 2 nd X Y Z
32 ot3rdg Z W 2 nd X Y Z = Z
33 32 3ad2ant3 X U Y V Z W 2 nd X Y Z = Z
34 31 33 sylan9eqr X U Y V Z W A = X Y Z 2 nd A = Z
35 27 30 34 3jca X U Y V Z W A = X Y Z 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z
36 24 35 jca X U Y V Z W A = X Y Z A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z
37 15 36 impbida X U Y V Z W A U × V × W 1 st 1 st A = X 2 nd 1 st A = Y 2 nd A = Z A = X Y Z