Metamath Proof Explorer


Theorem elALT2

Description: Alternate proof of el using ax-9 and ax-pow instead of ax-pr . (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elALT2 yxy

Proof

Step Hyp Ref Expression
1 zfpow yzyyzyxzy
2 ax9 z=xyzyx
3 2 alrimiv z=xyyzyx
4 ax8 z=xzyxy
5 3 4 embantd z=xyyzyxzyxy
6 5 spimvw zyyzyxzyxy
7 1 6 eximii yxy