Metamath Proof Explorer


Theorem elbdop

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elbdop TBndLinOpTLinOpnormopT<+∞

Proof

Step Hyp Ref Expression
1 fveq2 t=Tnormopt=normopT
2 1 breq1d t=Tnormopt<+∞normopT<+∞
3 df-bdop BndLinOp=tLinOp|normopt<+∞
4 2 3 elrab2 TBndLinOpTLinOpnormopT<+∞