Metamath Proof Explorer


Theorem elcatchom

Description: A morphism of the category of categories (in a universe) is a functor. See df-catc for the definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms ( catchom ). (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses catcrcl.c C = CatCat U
catcrcl.h H = Hom C
catcrcl.f φ F X H Y
Assertion elcatchom φ F X Func Y

Proof

Step Hyp Ref Expression
1 catcrcl.c C = CatCat U
2 catcrcl.h H = Hom C
3 catcrcl.f φ F X H Y
4 eqid Base C = Base C
5 1 2 3 catcrcl φ U V
6 1 2 3 4 catcrcl2 φ X Base C Y Base C
7 6 simpld φ X Base C
8 6 simprd φ Y Base C
9 1 4 5 2 7 8 catchom φ X H Y = X Func Y
10 3 9 eleqtrd φ F X Func Y