Metamath Proof Explorer


Theorem elcntr

Description: Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses elcntr.b B=BaseM
elcntr.p +˙=+M
elcntr.z Z=CntrM
Assertion elcntr AZAByBA+˙y=y+˙A

Proof

Step Hyp Ref Expression
1 elcntr.b B=BaseM
2 elcntr.p +˙=+M
3 elcntr.z Z=CntrM
4 eqid CntzM=CntzM
5 1 4 cntrval CntzMB=CntrM
6 3 5 eqtr4i Z=CntzMB
7 6 eleq2i AZACntzMB
8 ssid BB
9 1 2 4 elcntz BBACntzMBAByBA+˙y=y+˙A
10 8 9 ax-mp ACntzMBAByBA+˙y=y+˙A
11 7 10 bitri AZAByBA+˙y=y+˙A