Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Disjoints vs. converse functions
eldisjs2
Next ⟩
eldisjs3
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldisjs2
Description:
Elementhood in the class of disjoints.
(Contributed by
Peter Mazsa
, 5-Sep-2021)
Ref
Expression
Assertion
eldisjs2
⊢
R
∈
Disjs
↔
≀
R
-1
⊆
I
∧
R
∈
Rels
Proof
Step
Hyp
Ref
Expression
1
eldisjs
⊢
R
∈
Disjs
↔
≀
R
-1
∈
CnvRefRels
∧
R
∈
Rels
2
cosselcnvrefrels2
⊢
≀
R
-1
∈
CnvRefRels
↔
≀
R
-1
⊆
I
∧
≀
R
-1
∈
Rels
3
cosscnvelrels
⊢
R
∈
Rels
→
≀
R
-1
∈
Rels
4
3
biantrud
⊢
R
∈
Rels
→
≀
R
-1
⊆
I
↔
≀
R
-1
⊆
I
∧
≀
R
-1
∈
Rels
5
2
4
bitr4id
⊢
R
∈
Rels
→
≀
R
-1
∈
CnvRefRels
↔
≀
R
-1
⊆
I
6
5
pm5.32ri
⊢
≀
R
-1
∈
CnvRefRels
∧
R
∈
Rels
↔
≀
R
-1
⊆
I
∧
R
∈
Rels
7
1
6
bitri
⊢
R
∈
Disjs
↔
≀
R
-1
⊆
I
∧
R
∈
Rels