Metamath Proof Explorer


Theorem eldisjs5

Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion eldisjs5 R V R Disjs u dom R v dom R u = v u R v R = R Rels

Proof

Step Hyp Ref Expression
1 eldisjs2 R Disjs R -1 I R Rels
2 cosscnvssid5 R -1 I Rel R u dom R v dom R u = v u R v R = Rel R
3 elrelsrel R V R Rels Rel R
4 3 anbi2d R V R -1 I R Rels R -1 I Rel R
5 3 anbi2d R V u dom R v dom R u = v u R v R = R Rels u dom R v dom R u = v u R v R = Rel R
6 4 5 bibi12d R V R -1 I R Rels u dom R v dom R u = v u R v R = R Rels R -1 I Rel R u dom R v dom R u = v u R v R = Rel R
7 2 6 mpbiri R V R -1 I R Rels u dom R v dom R u = v u R v R = R Rels
8 1 7 syl5bb R V R Disjs u dom R v dom R u = v u R v R = R Rels