Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Disjoints vs. converse functions
eldisjs5
Next ⟩
eldisjsdisj
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldisjs5
Description:
Elementhood in the class of disjoints.
(Contributed by
Peter Mazsa
, 5-Sep-2021)
Ref
Expression
Assertion
eldisjs5
⊢
R
∈
V
→
R
∈
Disjs
↔
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
R
∈
Rels
Proof
Step
Hyp
Ref
Expression
1
eldisjs2
⊢
R
∈
Disjs
↔
≀
R
-1
⊆
I
∧
R
∈
Rels
2
cosscnvssid5
⊢
≀
R
-1
⊆
I
∧
Rel
⁡
R
↔
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
Rel
⁡
R
3
elrelsrel
⊢
R
∈
V
→
R
∈
Rels
↔
Rel
⁡
R
4
3
anbi2d
⊢
R
∈
V
→
≀
R
-1
⊆
I
∧
R
∈
Rels
↔
≀
R
-1
⊆
I
∧
Rel
⁡
R
5
3
anbi2d
⊢
R
∈
V
→
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
R
∈
Rels
↔
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
Rel
⁡
R
6
4
5
bibi12d
⊢
R
∈
V
→
≀
R
-1
⊆
I
∧
R
∈
Rels
↔
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
R
∈
Rels
↔
≀
R
-1
⊆
I
∧
Rel
⁡
R
↔
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
Rel
⁡
R
7
2
6
mpbiri
⊢
R
∈
V
→
≀
R
-1
⊆
I
∧
R
∈
Rels
↔
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
R
∈
Rels
8
1
7
syl5bb
⊢
R
∈
V
→
R
∈
Disjs
↔
∀
u
∈
dom
⁡
R
∀
v
∈
dom
⁡
R
u
=
v
∨
u
R
∩
v
R
=
∅
∧
R
∈
Rels