Step |
Hyp |
Ref |
Expression |
1 |
|
eldisjs2 |
⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) |
2 |
|
cosscnvssid5 |
⊢ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) |
3 |
|
elrelsrel |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ) ) |
5 |
3
|
anbi2d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) ) |
6 |
4 5
|
bibi12d |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ↔ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) ) ) |
7 |
2 6
|
mpbiri |
⊢ ( 𝑅 ∈ 𝑉 → ( ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ) |
8 |
1 7
|
syl5bb |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Disjs ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ) |