| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldisjs2 | ⊢ ( 𝑅  ∈   Disjs   ↔  (  ≀  ◡ 𝑅  ⊆   I   ∧  𝑅  ∈   Rels  ) ) | 
						
							| 2 |  | cosscnvssid5 | ⊢ ( (  ≀  ◡ 𝑅  ⊆   I   ∧  Rel  𝑅 )  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  Rel  𝑅 ) ) | 
						
							| 3 |  | elrelsrel | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝑅  ∈   Rels   ↔  Rel  𝑅 ) ) | 
						
							| 4 | 3 | anbi2d | ⊢ ( 𝑅  ∈  𝑉  →  ( (  ≀  ◡ 𝑅  ⊆   I   ∧  𝑅  ∈   Rels  )  ↔  (  ≀  ◡ 𝑅  ⊆   I   ∧  Rel  𝑅 ) ) ) | 
						
							| 5 | 3 | anbi2d | ⊢ ( 𝑅  ∈  𝑉  →  ( ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  𝑅  ∈   Rels  )  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  Rel  𝑅 ) ) ) | 
						
							| 6 | 4 5 | bibi12d | ⊢ ( 𝑅  ∈  𝑉  →  ( ( (  ≀  ◡ 𝑅  ⊆   I   ∧  𝑅  ∈   Rels  )  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  𝑅  ∈   Rels  ) )  ↔  ( (  ≀  ◡ 𝑅  ⊆   I   ∧  Rel  𝑅 )  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  Rel  𝑅 ) ) ) ) | 
						
							| 7 | 2 6 | mpbiri | ⊢ ( 𝑅  ∈  𝑉  →  ( (  ≀  ◡ 𝑅  ⊆   I   ∧  𝑅  ∈   Rels  )  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  𝑅  ∈   Rels  ) ) ) | 
						
							| 8 | 1 7 | bitrid | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝑅  ∈   Disjs   ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  𝑅  ∈   Rels  ) ) ) |