Metamath Proof Explorer


Theorem eldisjs5

Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion eldisjs5 ( 𝑅𝑉 → ( 𝑅 ∈ Disjs ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) )

Proof

Step Hyp Ref Expression
1 eldisjs2 ( 𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) )
2 cosscnvssid5 ( ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) )
3 elrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) )
4 3 anbi2d ( 𝑅𝑉 → ( ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ) )
5 3 anbi2d ( 𝑅𝑉 → ( ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) )
6 4 5 bibi12d ( 𝑅𝑉 → ( ( ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) ↔ ( ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) ) )
7 2 6 mpbiri ( 𝑅𝑉 → ( ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) )
8 1 7 syl5bb ( 𝑅𝑉 → ( 𝑅 ∈ Disjs ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ 𝑅 ∈ Rels ) ) )