Metamath Proof Explorer


Theorem eldmne0

Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion eldmne0 XdomFF

Proof

Step Hyp Ref Expression
1 ne0i XdomFdomF
2 dmeq F=domF=dom
3 dm0 dom=
4 2 3 eqtrdi F=domF=
5 4 necon3i domFF
6 1 5 syl XdomFF