Metamath Proof Explorer


Theorem f1rnen

Description: Equinumerosity of the range of an injective function. (Contributed by Thierry Arnoux, 7-Jul-2023)

Ref Expression
Assertion f1rnen F:A1-1BAVranFA

Proof

Step Hyp Ref Expression
1 f1fn F:A1-1BFFnA
2 1 adantr F:A1-1BAVFFnA
3 fnima FFnAFA=ranF
4 2 3 syl F:A1-1BAVFA=ranF
5 ssid AA
6 f1imaeng F:A1-1BAAAVFAA
7 5 6 mp3an2 F:A1-1BAVFAA
8 4 7 eqbrtrrd F:A1-1BAVranFA