Metamath Proof Explorer


Theorem eldmrexrn

Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion eldmrexrn FunFYdomFxranFx=FY

Proof

Step Hyp Ref Expression
1 fvelrn FunFYdomFFYranF
2 eqid FY=FY
3 eqeq1 x=FYx=FYFY=FY
4 3 rspcev FYranFFY=FYxranFx=FY
5 1 2 4 sylancl FunFYdomFxranFx=FY
6 5 ex FunFYdomFxranFx=FY