Metamath Proof Explorer


Theorem eldmrexrnb

Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv of the value of a function, ( FY ) = (/) may mean that the value of F at Y is the empty set or that F is not defined at Y . (Contributed by Alexander van der Vekens, 17-Dec-2017)

Ref Expression
Assertion eldmrexrnb FunFranFYdomFxranFx=FY

Proof

Step Hyp Ref Expression
1 eldmrexrn FunFYdomFxranFx=FY
2 1 adantr FunFranFYdomFxranFx=FY
3 eleq1 x=FYxranFFYranF
4 elnelne2 FYranFranFFY
5 n0 FYyyFY
6 elfvdm yFYYdomF
7 6 exlimiv yyFYYdomF
8 5 7 sylbi FYYdomF
9 4 8 syl FYranFranFYdomF
10 9 expcom ranFFYranFYdomF
11 10 adantl FunFranFFYranFYdomF
12 11 com12 FYranFFunFranFYdomF
13 3 12 syl6bi x=FYxranFFunFranFYdomF
14 13 com13 FunFranFxranFx=FYYdomF
15 14 rexlimdv FunFranFxranFx=FYYdomF
16 2 15 impbid FunFranFYdomFxranFx=FY