Metamath Proof Explorer


Theorem eleccnvep

Description: Elementhood in the converse epsilon coset of A is elementhood in A . (Contributed by Peter Mazsa, 27-Jan-2019)

Ref Expression
Assertion eleccnvep AVBAE-1BA

Proof

Step Hyp Ref Expression
1 relcnv RelE-1
2 relelec RelE-1BAE-1AE-1B
3 1 2 ax-mp BAE-1AE-1B
4 brcnvep AVAE-1BBA
5 3 4 bitrid AVBAE-1BA