Description: Elementhood in the converse epsilon coset of A is elementhood in A . (Contributed by Peter Mazsa, 27-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eleccnvep | |- ( A e. V -> ( B e. [ A ] `' _E <-> B e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv | |- Rel `' _E |
|
2 | relelec | |- ( Rel `' _E -> ( B e. [ A ] `' _E <-> A `' _E B ) ) |
|
3 | 1 2 | ax-mp | |- ( B e. [ A ] `' _E <-> A `' _E B ) |
4 | brcnvep | |- ( A e. V -> ( A `' _E B <-> B e. A ) ) |
|
5 | 3 4 | syl5bb | |- ( A e. V -> ( B e. [ A ] `' _E <-> B e. A ) ) |