Metamath Proof Explorer
		
		
		
		Description:  A membership and equality inference.  (Contributed by NM, 4-Jan-2006)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eleqtrdi.1 |  | 
					
						|  |  | eleqtrdi.2 |  | 
				
					|  | Assertion | eleqtrdi |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleqtrdi.1 |  | 
						
							| 2 |  | eleqtrdi.2 |  | 
						
							| 3 | 2 | a1i |  | 
						
							| 4 | 1 3 | eleqtrd |  |