Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
elfunsg
Next ⟩
brsingle
Metamath Proof Explorer
Ascii
Unicode
Theorem
elfunsg
Description:
Closed form of
elfuns
.
(Contributed by
Scott Fenton
, 2-May-2014)
Ref
Expression
Assertion
elfunsg
⊢
F
∈
V
→
F
∈
𝖥𝗎𝗇𝗌
↔
Fun
⁡
F
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
f
=
F
→
f
∈
𝖥𝗎𝗇𝗌
↔
F
∈
𝖥𝗎𝗇𝗌
2
funeq
⊢
f
=
F
→
Fun
⁡
f
↔
Fun
⁡
F
3
vex
⊢
f
∈
V
4
3
elfuns
⊢
f
∈
𝖥𝗎𝗇𝗌
↔
Fun
⁡
f
5
1
2
4
vtoclbg
⊢
F
∈
V
→
F
∈
𝖥𝗎𝗇𝗌
↔
Fun
⁡
F