Metamath Proof Explorer


Theorem elfvov2

Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 4-Aug-2025)

Ref Expression
Hypotheses elfvov1.o Rel dom O
elfvov1.s S = I O R
elfvov1.x φ X S Y
Assertion elfvov2 φ R V

Proof

Step Hyp Ref Expression
1 elfvov1.o Rel dom O
2 elfvov1.s S = I O R
3 elfvov1.x φ X S Y
4 n0i X S Y ¬ S Y =
5 3 4 syl φ ¬ S Y =
6 1 ovprc2 ¬ R V I O R =
7 2 6 eqtrid ¬ R V S =
8 7 fveq1d ¬ R V S Y = Y
9 0fv Y =
10 8 9 eqtrdi ¬ R V S Y =
11 5 10 nsyl2 φ R V