Metamath Proof Explorer


Theorem elfzmlbm

Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion elfzmlbm KMNKM0NM

Proof

Step Hyp Ref Expression
1 elfzuz KMNKM
2 uznn0sub KMKM0
3 1 2 syl KMNKM0
4 elfzuz2 KMNNM
5 uznn0sub NMNM0
6 4 5 syl KMNNM0
7 elfzelz KMNK
8 7 zred KMNK
9 elfzel2 KMNN
10 9 zred KMNN
11 elfzel1 KMNM
12 11 zred KMNM
13 elfzle2 KMNKN
14 8 10 12 13 lesub1dd KMNKMNM
15 elfz2nn0 KM0NMKM0NM0KMNM
16 3 6 14 15 syl3anbrc KMNKM0NM