| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2 |
|
| 2 |
|
znn0sub |
|
| 3 |
2
|
adantr |
|
| 4 |
3
|
biimpcd |
|
| 5 |
4
|
adantr |
|
| 6 |
5
|
impcom |
|
| 7 |
|
zre |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
adantr |
|
| 10 |
|
zre |
|
| 11 |
10
|
adantl |
|
| 12 |
11
|
adantr |
|
| 13 |
|
zaddcl |
|
| 14 |
13
|
adantlr |
|
| 15 |
14
|
zred |
|
| 16 |
|
letr |
|
| 17 |
9 12 15 16
|
syl3anc |
|
| 18 |
|
zre |
|
| 19 |
|
addge01 |
|
| 20 |
8 18 19
|
syl2an |
|
| 21 |
|
elnn0z |
|
| 22 |
21
|
simplbi2 |
|
| 23 |
22
|
adantl |
|
| 24 |
20 23
|
sylbird |
|
| 25 |
17 24
|
syld |
|
| 26 |
25
|
imp |
|
| 27 |
|
df-3an |
|
| 28 |
|
3ancoma |
|
| 29 |
27 28
|
bitr3i |
|
| 30 |
10 7 18
|
3anim123i |
|
| 31 |
29 30
|
sylbi |
|
| 32 |
|
lesubadd2 |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
biimprcd |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
impcom |
|
| 37 |
6 26 36
|
3jca |
|
| 38 |
37
|
exp31 |
|
| 39 |
38
|
com23 |
|
| 40 |
39
|
3adant2 |
|
| 41 |
40
|
imp |
|
| 42 |
41
|
com12 |
|
| 43 |
1 42
|
biimtrid |
|
| 44 |
43
|
imp |
|
| 45 |
|
elfz2nn0 |
|
| 46 |
44 45
|
sylibr |
|