Metamath Proof Explorer


Theorem elfzmlbp

Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018)

Ref Expression
Assertion elfzmlbp N K M M + N K M 0 N

Proof

Step Hyp Ref Expression
1 elfz2 K M M + N M M + N K M K K M + N
2 znn0sub M K M K K M 0
3 2 adantr M K N M K K M 0
4 3 biimpcd M K M K N K M 0
5 4 adantr M K K M + N M K N K M 0
6 5 impcom M K N M K K M + N K M 0
7 zre M M
8 7 adantr M K M
9 8 adantr M K N M
10 zre K K
11 10 adantl M K K
12 11 adantr M K N K
13 zaddcl M N M + N
14 13 adantlr M K N M + N
15 14 zred M K N M + N
16 letr M K M + N M K K M + N M M + N
17 9 12 15 16 syl3anc M K N M K K M + N M M + N
18 zre N N
19 addge01 M N 0 N M M + N
20 8 18 19 syl2an M K N 0 N M M + N
21 elnn0z N 0 N 0 N
22 21 simplbi2 N 0 N N 0
23 22 adantl M K N 0 N N 0
24 20 23 sylbird M K N M M + N N 0
25 17 24 syld M K N M K K M + N N 0
26 25 imp M K N M K K M + N N 0
27 df-3an M K N M K N
28 3ancoma M K N K M N
29 27 28 bitr3i M K N K M N
30 10 7 18 3anim123i K M N K M N
31 29 30 sylbi M K N K M N
32 lesubadd2 K M N K M N K M + N
33 31 32 syl M K N K M N K M + N
34 33 biimprcd K M + N M K N K M N
35 34 adantl M K K M + N M K N K M N
36 35 impcom M K N M K K M + N K M N
37 6 26 36 3jca M K N M K K M + N K M 0 N 0 K M N
38 37 exp31 M K N M K K M + N K M 0 N 0 K M N
39 38 com23 M K M K K M + N N K M 0 N 0 K M N
40 39 3adant2 M M + N K M K K M + N N K M 0 N 0 K M N
41 40 imp M M + N K M K K M + N N K M 0 N 0 K M N
42 41 com12 N M M + N K M K K M + N K M 0 N 0 K M N
43 1 42 syl5bi N K M M + N K M 0 N 0 K M N
44 43 imp N K M M + N K M 0 N 0 K M N
45 elfz2nn0 K M 0 N K M 0 N 0 K M N
46 44 45 sylibr N K M M + N K M 0 N