Metamath Proof Explorer


Theorem elfzo0l

Description: A member of a half-open range of nonnegative integers is either 0 or a member of the corresponding half-open range of positive integers. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfzo0l K0..^NK=0K1..^N

Proof

Step Hyp Ref Expression
1 elfzo0 K0..^NK0NK<N
2 1 simp2bi K0..^NN
3 fzo0sn0fzo1 N0..^N=01..^N
4 3 eleq2d NK0..^NK01..^N
5 elun K01..^NK0K1..^N
6 elsni K0K=0
7 6 orim1i K0K1..^NK=0K1..^N
8 5 7 sylbi K01..^NK=0K1..^N
9 4 8 syl6bi NK0..^NK=0K1..^N
10 2 9 mpcom K0..^NK=0K1..^N