Metamath Proof Explorer


Theorem elfzoextl

Description: Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025)

Ref Expression
Assertion elfzoextl Z M ..^ N I 0 Z M ..^ I + N

Proof

Step Hyp Ref Expression
1 elfzoel2 Z M ..^ N N
2 nn0pzuz I 0 N I + N N
3 1 2 sylan2 I 0 Z M ..^ N I + N N
4 fzoss2 I + N N M ..^ N M ..^ I + N
5 3 4 syl I 0 Z M ..^ N M ..^ N M ..^ I + N
6 5 sseld I 0 Z M ..^ N Z M ..^ N Z M ..^ I + N
7 6 syldbl2 I 0 Z M ..^ N Z M ..^ I + N
8 7 ancoms Z M ..^ N I 0 Z M ..^ I + N