Metamath Proof Explorer


Theorem elidinxpid

Description: Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elidinxpid BIA×AxAB=xx

Proof

Step Hyp Ref Expression
1 elidinxp BIA×AxAAB=xx
2 inidm AA=A
3 2 rexeqi xAAB=xxxAB=xx
4 1 3 bitri BIA×AxAB=xx