Metamath Proof Explorer


Theorem eliincex

Description: Counterexample to show that the additional conditions in eliin and eliin2 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eliinct.1 A=V
eliinct.2 B=
Assertion eliincex ¬AxBCxBAC

Proof

Step Hyp Ref Expression
1 eliinct.1 A=V
2 eliinct.2 B=
3 nvel ¬VxBC
4 1 3 eqneltri ¬AxBC
5 ral0 xAC
6 2 raleqi xBACxAC
7 5 6 mpbir xBAC
8 pm3.22 ¬AxBCxBACxBAC¬AxBC
9 8 olcd ¬AxBCxBACAxBC¬xBACxBAC¬AxBC
10 xor ¬AxBCxBACAxBC¬xBACxBAC¬AxBC
11 9 10 sylibr ¬AxBCxBAC¬AxBCxBAC
12 4 7 11 mp2an ¬AxBCxBAC