Metamath Proof Explorer


Theorem elimhyp3v

Description: Eliminate a hypothesis containing 3 class variables. (Contributed by NM, 14-Aug-1999)

Ref Expression
Hypotheses elimhyp3v.1 A=ifφADφχ
elimhyp3v.2 B=ifφBRχθ
elimhyp3v.3 C=ifφCSθτ
elimhyp3v.4 D=ifφADηζ
elimhyp3v.5 R=ifφBRζσ
elimhyp3v.6 S=ifφCSστ
elimhyp3v.7 η
Assertion elimhyp3v τ

Proof

Step Hyp Ref Expression
1 elimhyp3v.1 A=ifφADφχ
2 elimhyp3v.2 B=ifφBRχθ
3 elimhyp3v.3 C=ifφCSθτ
4 elimhyp3v.4 D=ifφADηζ
5 elimhyp3v.5 R=ifφBRζσ
6 elimhyp3v.6 S=ifφCSστ
7 elimhyp3v.7 η
8 iftrue φifφAD=A
9 8 eqcomd φA=ifφAD
10 9 1 syl φφχ
11 iftrue φifφBR=B
12 11 eqcomd φB=ifφBR
13 12 2 syl φχθ
14 iftrue φifφCS=C
15 14 eqcomd φC=ifφCS
16 15 3 syl φθτ
17 10 13 16 3bitrd φφτ
18 17 ibi φτ
19 iffalse ¬φifφAD=D
20 19 eqcomd ¬φD=ifφAD
21 20 4 syl ¬φηζ
22 iffalse ¬φifφBR=R
23 22 eqcomd ¬φR=ifφBR
24 23 5 syl ¬φζσ
25 iffalse ¬φifφCS=S
26 25 eqcomd ¬φS=ifφCS
27 26 6 syl ¬φστ
28 21 24 27 3bitrd ¬φητ
29 7 28 mpbii ¬φτ
30 18 29 pm2.61i τ