Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elimhyp4v.1 | |
|
elimhyp4v.2 | |
||
elimhyp4v.3 | |
||
elimhyp4v.4 | |
||
elimhyp4v.5 | |
||
elimhyp4v.6 | |
||
elimhyp4v.7 | |
||
elimhyp4v.8 | |
||
elimhyp4v.9 | |
||
Assertion | elimhyp4v | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimhyp4v.1 | |
|
2 | elimhyp4v.2 | |
|
3 | elimhyp4v.3 | |
|
4 | elimhyp4v.4 | |
|
5 | elimhyp4v.5 | |
|
6 | elimhyp4v.6 | |
|
7 | elimhyp4v.7 | |
|
8 | elimhyp4v.8 | |
|
9 | elimhyp4v.9 | |
|
10 | iftrue | |
|
11 | 10 | eqcomd | |
12 | 11 1 | syl | |
13 | iftrue | |
|
14 | 13 | eqcomd | |
15 | 14 2 | syl | |
16 | 12 15 | bitrd | |
17 | iftrue | |
|
18 | 17 | eqcomd | |
19 | 18 3 | syl | |
20 | iftrue | |
|
21 | 20 | eqcomd | |
22 | 21 4 | syl | |
23 | 16 19 22 | 3bitrd | |
24 | 23 | ibi | |
25 | iffalse | |
|
26 | 25 | eqcomd | |
27 | 26 5 | syl | |
28 | iffalse | |
|
29 | 28 | eqcomd | |
30 | 29 6 | syl | |
31 | 27 30 | bitrd | |
32 | iffalse | |
|
33 | 32 | eqcomd | |
34 | 33 7 | syl | |
35 | iffalse | |
|
36 | 35 | eqcomd | |
37 | 36 8 | syl | |
38 | 31 34 37 | 3bitrd | |
39 | 9 38 | mpbii | |
40 | 24 39 | pm2.61i | |