Metamath Proof Explorer


Theorem elimhyp4v

Description: Eliminate a hypothesis containing 4 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)

Ref Expression
Hypotheses elimhyp4v.1 A=ifφADφχ
elimhyp4v.2 B=ifφBRχθ
elimhyp4v.3 C=ifφCSθτ
elimhyp4v.4 F=ifφFGτψ
elimhyp4v.5 D=ifφADηζ
elimhyp4v.6 R=ifφBRζσ
elimhyp4v.7 S=ifφCSσρ
elimhyp4v.8 G=ifφFGρψ
elimhyp4v.9 η
Assertion elimhyp4v ψ

Proof

Step Hyp Ref Expression
1 elimhyp4v.1 A=ifφADφχ
2 elimhyp4v.2 B=ifφBRχθ
3 elimhyp4v.3 C=ifφCSθτ
4 elimhyp4v.4 F=ifφFGτψ
5 elimhyp4v.5 D=ifφADηζ
6 elimhyp4v.6 R=ifφBRζσ
7 elimhyp4v.7 S=ifφCSσρ
8 elimhyp4v.8 G=ifφFGρψ
9 elimhyp4v.9 η
10 iftrue φifφAD=A
11 10 eqcomd φA=ifφAD
12 11 1 syl φφχ
13 iftrue φifφBR=B
14 13 eqcomd φB=ifφBR
15 14 2 syl φχθ
16 12 15 bitrd φφθ
17 iftrue φifφCS=C
18 17 eqcomd φC=ifφCS
19 18 3 syl φθτ
20 iftrue φifφFG=F
21 20 eqcomd φF=ifφFG
22 21 4 syl φτψ
23 16 19 22 3bitrd φφψ
24 23 ibi φψ
25 iffalse ¬φifφAD=D
26 25 eqcomd ¬φD=ifφAD
27 26 5 syl ¬φηζ
28 iffalse ¬φifφBR=R
29 28 eqcomd ¬φR=ifφBR
30 29 6 syl ¬φζσ
31 27 30 bitrd ¬φησ
32 iffalse ¬φifφCS=S
33 32 eqcomd ¬φS=ifφCS
34 33 7 syl ¬φσρ
35 iffalse ¬φifφFG=G
36 35 eqcomd ¬φG=ifφFG
37 36 8 syl ¬φρψ
38 31 34 37 3bitrd ¬φηψ
39 9 38 mpbii ¬φψ
40 24 39 pm2.61i ψ