Metamath Proof Explorer


Theorem elind

Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses elind.1 φXA
elind.2 φXB
Assertion elind φXAB

Proof

Step Hyp Ref Expression
1 elind.1 φXA
2 elind.2 φXB
3 elin XABXAXB
4 1 2 3 sylanbrc φXAB