Metamath Proof Explorer


Theorem elinxp

Description: Membership in an intersection with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elinxp CRA×BxAyBC=xyxyR

Proof

Step Hyp Ref Expression
1 relinxp RelRA×B
2 elrel RelRA×BCRA×BxyC=xy
3 1 2 mpan CRA×BxyC=xy
4 eleq1 C=xyCRA×BxyRA×B
5 4 biimpd C=xyCRA×BxyRA×B
6 opelinxp xyRA×BxAyBxyR
7 6 biimpi xyRA×BxAyBxyR
8 5 7 syl6com CRA×BC=xyxAyBxyR
9 8 ancld CRA×BC=xyC=xyxAyBxyR
10 an12 C=xyxAyBxyRxAyBC=xyxyR
11 9 10 imbitrdi CRA×BC=xyxAyBC=xyxyR
12 11 2eximdv CRA×BxyC=xyxyxAyBC=xyxyR
13 3 12 mpd CRA×BxyxAyBC=xyxyR
14 r2ex xAyBC=xyxyRxyxAyBC=xyxyR
15 13 14 sylibr CRA×BxAyBC=xyxyR
16 6 simplbi2 xAyBxyRxyRA×B
17 4 biimprd C=xyxyRA×BCRA×B
18 16 17 syl9 xAyBC=xyxyRCRA×B
19 18 impd xAyBC=xyxyRCRA×B
20 19 rexlimivv xAyBC=xyxyRCRA×B
21 15 20 impbii CRA×BxAyBC=xyxyR