Metamath Proof Explorer
Description: Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eliood.1 |
|
|
|
eliood.2 |
|
|
|
eliood.3 |
|
|
|
eliood.4 |
|
|
|
eliood.5 |
|
|
Assertion |
eliood |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliood.1 |
|
| 2 |
|
eliood.2 |
|
| 3 |
|
eliood.3 |
|
| 4 |
|
eliood.4 |
|
| 5 |
|
eliood.5 |
|
| 6 |
|
elioo2 |
|
| 7 |
1 2 6
|
syl2anc |
|
| 8 |
3 4 5 7
|
mpbir3and |
|