Metamath Proof Explorer


Theorem eliood

Description: Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliood.1 φA*
eliood.2 φB*
eliood.3 φC
eliood.4 φA<C
eliood.5 φC<B
Assertion eliood φCAB

Proof

Step Hyp Ref Expression
1 eliood.1 φA*
2 eliood.2 φB*
3 eliood.3 φC
4 eliood.4 φA<C
5 eliood.5 φC<B
6 elioo2 A*B*CABCA<CC<B
7 1 2 6 syl2anc φCABCA<CC<B
8 3 4 5 7 mpbir3and φCAB