Metamath Proof Explorer


Theorem elixpconst

Description: Membership in an infinite Cartesian product of a constant B . (Contributed by NM, 12-Apr-2008)

Ref Expression
Hypothesis elixp.1 FV
Assertion elixpconst FxABF:AB

Proof

Step Hyp Ref Expression
1 elixp.1 FV
2 1 elixp FxABFFnAxAFxB
3 ffnfv F:ABFFnAxAFxB
4 2 3 bitr4i FxABF:AB