Metamath Proof Explorer


Theorem elmapresaunres2

Description: fresaunres2 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion elmapresaunres2 FCAGCBFAB=GABFGB=G

Proof

Step Hyp Ref Expression
1 elmapi FCAF:AC
2 elmapi GCBG:BC
3 id FAB=GABFAB=GAB
4 fresaunres2 F:ACG:BCFAB=GABFGB=G
5 1 2 3 4 syl3an FCAGCBFAB=GABFGB=G