Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Diophantine sets 2 miscellanea
elmapresaunres2
Next ⟩
Diophantine sets 2: union and intersection. Monotone Boolean algebra
Metamath Proof Explorer
Ascii
Unicode
Theorem
elmapresaunres2
Description:
fresaunres2
transposed to mappings.
(Contributed by
Stefan O'Rear
, 9-Oct-2014)
Ref
Expression
Assertion
elmapresaunres2
⊢
F
∈
C
A
∧
G
∈
C
B
∧
F
↾
A
∩
B
=
G
↾
A
∩
B
→
F
∪
G
↾
B
=
G
Proof
Step
Hyp
Ref
Expression
1
elmapi
⊢
F
∈
C
A
→
F
:
A
⟶
C
2
elmapi
⊢
G
∈
C
B
→
G
:
B
⟶
C
3
id
⊢
F
↾
A
∩
B
=
G
↾
A
∩
B
→
F
↾
A
∩
B
=
G
↾
A
∩
B
4
fresaunres2
⊢
F
:
A
⟶
C
∧
G
:
B
⟶
C
∧
F
↾
A
∩
B
=
G
↾
A
∩
B
→
F
∪
G
↾
B
=
G
5
1
2
3
4
syl3an
⊢
F
∈
C
A
∧
G
∈
C
B
∧
F
↾
A
∩
B
=
G
↾
A
∩
B
→
F
∪
G
↾
B
=
G